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1.0 Overview

RocketDriver is the software system that controls the physical components of the Theseus
rocket and connects those components to the graphical user interface. The primary goal of
this software is to ensure safety during testing and launch by collecting temperature and
pressure data for operators to monitor, carefully managing actuator and igniter timing, and
ensuring the system behaves only in expected ways.

2.0 Design Goals

e Safe system. This software needs to be designed to pass all safety critical software
tests.

e Ease of reading and writing. This software needs to be written and structured such
that programmers with a level of XXX can understand and make changes to the
code.

e Fast communication. This software needs to be designed such that its CAN system is
able to keep the number of dropped CAN frames low. The functions that write to and
read from the CAN bus must also be able to keep up so that the buffers (hardware
and software level) do not get full. Keeping the baud rate as high as possible is also
desirable.

e Anything I'm missing?

3.0 Milestones

January 20 - 26 — Unit tests planned, skeleton or pseudo code written

January 26 - 29 — Formal schedule for each system

January 30 - February 29 — Weekly code reviews to discuss progress and roadblocks
February 29 — Fully prepared for static fire

March 15 — each burp test planned

4.0 Technical Architecture
The overall plan for developing RocketDriver is split into three components: CAN,
peripherals, and the event handler. We shall discuss each one individually here.

4.1 CAN
The CAN bus (Controller Area Network) is how the rocket stand and the Pi Box
communicate with one another. Any commands given to the rocket by the user at the gui
must go through the CAN bus. The only way that a user can know for sure which state the
rocket is in is by the stand sending a CAN message to the Pi Box. Data from sensors, valves,
and igniters all use a CAN frame to be understood by the stand and the Pi Box.

4.2 Peripherals



The peripherals of the system are the igniters, the valves, and the sensors. Each of these are
physical components. The igniter’s job is to start the rocket’s engine and to launch the
parachute during descent. The valves control the flow of fluid (namely fuel) and the
pressure in the rocket. The sensors are responsible for monitoring the physical conditions
of the rocket like the temperature and pressure in the fuel tanks.

Because each of these objects exist, and because multiple of each are connected to
the rocket, it makes the most sense for this portion of RocketDriver to be built as
object-oriented code. Each of the three types of peripherals, (igniter, valve, and sensor) will
have their own class. Sensors are differentiated into multiple different types, but we need
each to interact with the surrounding system in the same way, so we will build a base
sensor class and each type of sensor will inherit from this base class. This will make it easy
to add or remove sensor types in the future as well as to modify the numbers of each sensor
on the rocket, since they can all be treated as sensor objects.

Each of these objects will be included in a rocket object in whatever quantity is
necessary. This rocket object will contain a missionState variable chosen from an
enumeration of all possible rocket states. The missionState variable will be responsible for
determining whether a given command is valid. The rocket object will also contain a set of
timers used to track gui updates and the launch countdown. Creating the rocket class will
allow easier modifications to the code in the future and make it easier to understand the
code structure.

UML Diagram included in appendix.

4.3 Event Handler
The event handler portion of the code is responsible for ensuring that commands and
updates are executed in a timely fashion. The main code operations will be structured to
use interrupts to operate. The main types of events the code needs to respond to are as
follows: timer interrupt occurs, command recieved, error changing peripheral state, loss of
comms.

When a timer interrupt occurs, we want the system to respond by either collecting
and sending sensor data or changing the state of peripherals. Sensor data will be sent via
routine updates to the gui over the CAN system. The other use for timer interrupts is to
precisely time the launch countdown. Imprecision in the launch timing can result in a
drastic failure.

The main responses to a command from the gui are: begin timer countdown, change
state of peripherals, update configuration files. Commands given by the operators will be
used primarily to modify the state of the rocket and move closer to launch. It will also be
used to update the configuration of the rocket manually without having to make changes to
the code directly. When a command is received, the system will lookup the the requested
operation and query the rocket object to determine the validity of the operation. An invalid
operation will be sent back to the gui as an error. A valid operation will be executed.



When errors occur in the code, the system needs to respond in a safety-appropriate
way and send a message to the gui via the CAN system what has occurred.

When a loss of communication occurs, the system needs to begin a stopwatch timer
to track how long the system is without communication and halt any ongoing operations to
prevent unexpected behavior.

Interrupts will be split into three categories of priority: safety critical updates,
operator commands, background functions. They will be executed in that order of priority.
There will exist in code a list of defined command functions that can be easily modified and
removed.

5.0 Testing Plan
As with the architecture plan, the discussion shall be broken down by part below.

5.1 CAN
Conducting an initial Benchmark test to determine the existing performance level of the
CAN bus should be a priority. The FlexCAN.h file contains tools that can be used for testing.
There are tools for determining how full the ring buffer gets (for both receiving and
transmitting CAN frames). Ensuring that this stays low will be a priority throughout testing.
There are also tools for determining how full the “mailbox” buffers are at a hardware level.
Keeping this low should also be a priority (if the buffer gets full at a hardware level the CAN
messages are simply dropped/lost). These tools can be used in conjunction to determine
how quickly the CAN software is running, and which parts need to be improved. Testing
against the original Benchmark in the lab to ensure that improvements are being made.

5.2  Peripherals
Testing of this code will require being in the lab with the ALARA. It needs to deal only with
reading from and writing to the various peripherals to the system. The end result of testing
in this system needs to perform the necessary data collection and changes to the
peripherals and set up sample rocket states and data for the event handler to perform
additional tests on. Sensor data from calibrated sensors should be within 95% accuracy of
measurements collected manually.

5.3 Event Handler
Since timing is very important in this portion of the system, we will use an oscilloscope to
measure timing accuracy and the amount of time taken to handle each interrupt. Testing for
this will be impossible to do virtually. It will require use of the ALARA to perform. This
portion of testing will likely take more time because of the physical hardware involved in
testing it.

It also deals with validating the operations of the system. This portion can be
performed virtually, simulating various valid and invalid commands and state movements.
We must determine safety-critical operations in the system and test the system to ensure it



only allows them to be performed under expected conditions. These can be written quickly
to test a wide variety of set-ups. All of these tests must pass for the system to be
determined successful.

6.0 Deliverables
Fully functional code
UML architecture diagram
UML sequence diagram
Non-time sensitive items
o Useful ReadMe for documentation
o Additional Documentation links / files



Appendix

UML Diagram of peripherals architecture
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